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SLOW MOTION OF A SPHERE THROUGH AN ANISOTROPIC, VISCOELASTIC FLUID* 

V.S. VOLKOV 

Slow motion of a rigid sphere through an incompressible, linear anisotropic visco- 
elastic fluid of general type is studied. Expressions fur the force and moment 
acting from the fluid towards the sphere are obtained. The results obtained can be 
used in constructing a theory of viscoelasticity of concentrated polymer solutions 
and melts where the mobility of the polymer chainsisstrongly anisotropic. 

1. Using the representations of the statistical nonequilibrium mechanics the authors of 
/l/ have shown that the liner viscoelastic behavior of a large class of the incompressible 
fluids can be described by the following equations: 

Uij (r, t) = - PSij + 1 ds’iijk! (t -S) ykl (“, S) 
(1.1) 

-m 

Here p is the pressure and y kl is the deformation rate tensor. From the phenomenological 
point of view the equations (1.1) define a linear anisotropic viscoelastic fluid the proper- 
ties of which are direction-dependent and described by the fourth rank tensor nijkl(t) of the 
memory functions. The tensor of the memory functions has a number of properties determined 
by its symmetry conditions. By virtue of the symmetry of the stress and deformationrateten- 
sors the tensor nijkl is symmetrical with respect to the indices i,i,kl and its invariance under 
the time inversion leads to the condition of symmetry in the form of a generalized Onsager 
theorem. We have 

lijkl ct) = ‘Ijikl ct) = ~ijlk ct)3 9ijkl (t) = qk,ij (t) (1.2) 

and this reduces the number of the independent memory functions to 21. 
The functions can be further reduced using the symmetry group characterizing the form of 

the anisotropic medium. The memory functions tensor is invariant with respect to this sym- 
metry group, and can therefore be represented in the form of a sum of a finite number of ten- 
sors with scalar coefficients. The general form of such tensors of up to the fourth rank in- 
clusive is given in /2/ for any symmetry group. 

Amongst the memory functions only U functions are independent, and these can always be 
written in the form /3/ 

qijk[ ct) = 5 ‘$I% (“)Y i<V<U 
a==1 

Here czkl are tensor constants and q,(t) arecertainscalar functions which can be written, in 
the case of fluids with discrete relaxation spectra, in the form of a finitesumoftheindices 
with the relaxation times %$ 

(1.3) 

In the case of isotropic incompressible viscoelastic fluids the properties of which are in- 
variant under all transformations of the orthogonal group, the tensor of the memory functions 
has the form 

(1.4) 

where qa and 7a are the relaxation viscosities and relaxation times respectively. 
For a linear viscous anisotropic fluid the relaxation times 'ca,,+O in (1.3) andthememory 

functions tensor has the form 
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In this case the properties of the medium are defined by a constant fourth rank tensor %,hi 
representing a viscosity coefficents tensor /4,5/, and S (2) is the delta function. 

Let us consider a motion of a sphere of radius a through a linear, anisotropic visco- 
elastic fluid of general type (1.11, at rest at infinity. We denote by u(t) the translational 
velocity of the sphere, and by w (1) its instantaneous rate of rotation, and introduce a co- 
ordinate system attached to the center of the sphere. If the translational and rotational 
Reynold's numbers are both small, which happens in many cases of practical importance/6/,then 
a quasistationary form of the system of equations of slow motion may be used (the time 1 ap- 
pears as a parameter, and r is the local radius-vector measured relative to the center of the 
sphere) 

1'3, i = O! oij, I = 0 t flij (IT, t) =- p6ij + i dS?ljjrl(t - S) ‘{hi (I‘. S) 11.5) 
-R- 

The velocity of perturbed motion of the fluid satisfies the condition of adhesionandofvanish- 
ing at infinity 

Vi = Ui + &ijkWjSk, r = a; Vi --t 0. )‘+ Dci (1.6) 

Let us determine, with help of the problem (1.5), (1.6), the force and moment acting from 
the direction of the linear, anisotropic viscoelastic fluid, on the sphere moving through the 
fluid. The solution of the linear viscoelastic problem can be reduced by means of a Fourier 
transformationtothe solution of the corresponding viscous problem. Indeed, the Fourier trans- 
formation CC 

n(w)= 1 e'"'a(t)dt 
-a 

by removing the time variable reduces the system (1.5) to the form 

Vi,j (1, 0) = 0, 0ij.j Ir, W) = 0 3 (fij jr> 0) = -pSij + ?lij%l loI Yhl (@) (1.7) 

The above equations differ from thecorresponding equations of the viscous problem only by the 
fact that the tensor qlilPi is replaced by qjijkl [CO], with 0 appearing as a parameter. 

In the linear formulation the velocity and pressure of the perturbed fluid can be written 
in the form 

vi z Vi< .+ oin, p = p' .+ p' 

The translational (v',p')and rotational (v",p') fields satisfy the initial equations of motion 
and the corresponding boundary conditions 

The total reaction force and moment acting on the sphere are also determined, generally Speak- 
ing, in the form of a sum 

Here sij' and Uij' are the stress tensors connected with the translational and rotational mo- 
tion respectively, and Ella iS an dternatirig tensor. We note that the total moment Mdepends, 
in contrast to the total force F, on the choice of the point from which the local radius 
vector is measured. 

2. In the present case the translational field (v',p') depends on the properties of the 
fluid determined by the fourth rank tensor qijnr, and also on the vector u characterizing the 
translational motion of the sphere. Since the translational motion equations are linear, we 
can follow the example of the case of an arbitrary body in an isotropic medium /7/ and intro- 
duce a characteristic tensor of the translational velocity field Vi,' and the associated 
characteristic vector of the pressure field Pi',which are independent of those parameters, as 
follows: 

u*' = IT*,', p'fi* j = + qi jlmstm Ps’“s (2.1) 

The incompressibility condition yields 

%jll = Phi, 
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and the above equations must be regarded as additional constraints imposed on the components 
of the viscosity tensor. 

The dependence of Vij’ and P,'on the radius-vector of the point is determined by the 

geometrical properties of the sphere surface only. From (2.1), (1.7) it follows that in this 

case a characteristic tensor of the stress field &,,,#' also exists, connected with the trans- 
lational motion and such that 

1 ’ 

Gij’ = 7 Qjlm~Tlm&s 3 nL, = - 6,,~,’ + avls~ia~, + avidax, (2.2) 

(n hns' depends, just as Vii’ and PI’, only on the geometry of the body). 
Let us obtain the equations which satisfy the characteristic fields of higherordergiven 

here. Substituting (2.1) and (2.2) into the initial equations of translational motionandthe 
boundary conditions, we have 

-&& = 0, & Vk' = $ P,', Vi/' = l!iij, r = a; Vij' + 0, r + CO (2.3) 
1 3 f I 

In deriving the equations and ocnditions (2.3) we have utilized the equations connecting the 
vectors and tensors, remembering that u1 and qitrr are arbitrary. The fact that the equations 
obtained here are independent of the medium properties and the sphere motion velocity, proves 
the existence of the characteristic fields introduced here. 

For a sphere of radius a the characteristic field of translational motion has the form 

/7/ 

J-..'-3O 
'I--4r 

(ninj + Fij)-_((f)3(snj-$6ij), Pi’=++?Zni, ?Zi=G (2.4) 

From (2.2) and (2.4) we obtain the characteristic stress tensor connected with the transla- 
tionalmotion of the sphere 

n;,, = - +- $ (6 hln* + hbll + L&)- + + (3r2 - 5a2) n$bnns 

In accordance with (1.9) and (2.2.), the resistance of the sphere during its translationalmo- 
tion can be expressed in terms of Illms' as follows: 

Fi+liklrn s &Gil&, (2.5) 
s 

Let us introduce the characteristic tensor of hydrodynamic resistance of the translational 
motion 

(2.6) 

depending, just as rIlrns', on the dimension and form of the body in question. Substitutingthe 
expression for IIlma' into (2.6) and integrating over the surface of the sphere of radius (I, 
and using the identities 

where P is 

s 
n.n.dn=4n&. I J 3 II' s 

ninjn~n, dR = + (6ij6k[ + 6ik6jl + fSilhjk) 

u $2 

the surface of a unit radius sphere, we obtain 

(2.7) 

From (2.51, (2.6) and (2.8) we find the force of resistance of a sphere during its transla- 
tionalmotion through an anisotropic viscous fluid 

Pi= - S+sua, lis = 3l5na (krl -7 rlilsl 7 rlills) 

The friction coefficients tensor' eta is symmetric, since the viscosity coefficients tensoris 
symmetric. 

In the same manner we can show that the part of the force of reaction due to the rota- 
tion of the sphere in an anisotropic fluid, is equal to zero. It follows therefore, just as 
in the case of an isotropic environment, that the total hydrodynamic resistance of the sphere 
is independent of its rotation and reduces to the force of resistance to the translational 
motion. 
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We use the principle of correspondence of the viscous and viscoelastic linear problems 
to find the Fourier component of the force sphere resistance inthelinear, viscoelasticaniso- 
tropic fluid 

F, (0) = - Gis loI uS (4, [is ial=+ x~ Cv]j$n [O] -‘L 21)ills [CO]) (2.9) 

The tensor of complex friction coefficients Eis lo1 is written with the symmetry conditions 
(1.2) taken into account. The force itself is found, using the inverse Fourier transforma- 
tion (2.9), in the form of a linear functional of the sphere velocity 

F*(t) = - i &(t -L?)R1(S)dS 
-m 

and in this case every component of the reaction tensor is a linear integral operator. 

3. We analyze the rotational motionin the same manner. Since the equationsof rotation- 
al motion are linear, the flow field (v",p") and the corxesponding stress tensor eij " can be 
represented in the form 

The characteristic vector 
point, only on the radius 
ary conditions: 

P,” and tensor Vi,"Of the rotational field depend, at the given 
of the sphere, and are given by the following equations and bound- 

$+,“=O, &V+-~ a P,“, Vii”= ~~~~~~~ i- = a; Vijrp-b 0, r--t w (3.2) 
t 2 3 I 

For a sphere of radius at the characteristic velocity and pressure fields satisfying (3.2) 
have the form /7f 

vii" = Ez,tXk (a / r)3, P,” = 0 (3.3) 

From (3.1) and (3.3) we obtain the characteristic stress tensor Alma" connected with the 
rotational motion of the sphere 

nimr= -3(a/r)3(e~snnRn, -I-a,,,n,nJ 

The moment of the reaction forces acting on the sphere rotating about its center is 
ed in accordance with (3.1) and (2.9) in terms of the characteristic stress tensor, 
following manner: 

(3.4) 

determin- 
in the 

(3.5) 

Let us introduce the rotational tensor 

!&,@ms =-+ 1 ~~E~~~Xj~~I~~~ 

-s 

which, unlike the translational tensor Kintroduced earlier, depends on the choice 

(3.6) 

of the 
coordinate origin. Substituting (3.4) into (3.6) and integrating we find, using the identi- 
ties (2.7), that the rotational tensor at the sphere center is equal to 

In this manner we obtain the following expression for the moment of the forces acting on the 
sphere rotating about its diameter in a viscous anisotropic fluid: 

Mi = - s+sTcOwB, tis’ = 4h~aSIt%d, - %hfJ %S 4 2%~ - 3riirral (3.7) 

The tensor of rotational resistance coefficients cisT is symmetric by virtue of the symmetry 
of the viscosity coefficients. This means that three principal forces opposing the rotation 
exist. It can be shown that the moment acting on the sphere during its translational motion 
through an anisotropic fluid is equal to zero. It follows therefore that the total moment 
acting on the sphere can be reduced to the moment given by the formulas (3.7). Consequently 
the translational and rotational motions of a sphere in an anisotropic fluid are independent 
of each other just as in the case of an isotropic medium. Further, following the principle 
of correspondence of the viscous and viscoelastic problems we repalce in (3.7) nijkl by %jkZ 

Iwl and obtain the following expression for the Fourier componentofthe momentofthe reaction 
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forces acting on the sphere in a linear, anisotropic viscoelastic fluid 

iMi (0) = -- 5isr Iwl a8 (O), List [Ol = 4ibxa” [(Bqlmlm [CD>] - Tlllmm [Ol) 8is $- 2%sU loI - 3%lIs loI1 (3.8) 

Inverse Fourier transform applied to (3.8) yields the formula for the moment of the resistance 
forces 

Mi (t) = - i cil* (t - s)q (S)dS (3.9) -m 

In the particular case of a sphere moving through an isotropic linear viscoelastic fluid 
(1.4), the results obtained coincide with the known results of /8,9/. The general formulas 
given in the paper for the resistance (2.5) and (2.6) and moment (3.5) and (3.6) forces hold 
also in the case of an arbitrary body moving slowly with velocity varying slowly with time, 
through a linear anisotropicviscoelastic medium. 
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